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NEW STRENGTH FORMULA FOR COAL PILLARS IN SOUTH AFRICA

By J. Nielen van der Merwe, Ph.D.1

ABSTRACT

For the last 3 decades, coal pillars in the Republic of South Africa have been designed using the well-known
strength formula of Salamon and Munro that was empirically derived after the Coalbrook disaster.  The
database was recently updated with the addition of failures that occurred after the initial analysis and the
omission of failures that occurred in a known anomalous area.  An alternative method of analysis was used
to refine the constants in the formula.  The outcome was a new formula that shows that the larger width-to-
height ratio coal pillars are significantly stronger than previously believed, even though the material itself is
represented by a reduced constant in the new formula.  The formula predicts lower strength for the smaller
pillars, explaining the failure of small pillars that were previously believed to have had high safety factors. 
Application of the new formula will result in improved coal reserve utilization for deeper workings and
enhanced stability of shallow workings.

1Managing director, Itasca Africa (Pty.) Ltd., Johannesburg, Republic of South Africa.
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     Figure 1.CCConcept of the measure of success of a safety factor formula.  A, The overlap area between the failed and stable cases
should be a minimum.  B, At a safety factor of 1.0, one-half of the pillars should have failed.

INTRODUCTION

The Coalbrook disaster in January 1960, in which more than
400 men lost their lives when the mine's pillars collapsed, led
to a concerted research effort that eventually resulted in the
creation of two formulas for the prediction of coal pillar
strength:  the power formula of Salamon and Munro [1967] and
the linear equation of Bieniawski [1968].  The Bieniawski
formula was based on in situ tests of large coal specimens; the
Salamon-Munro formula, on a statistical analysis of failed and
stable pillar cases.  The South African mining industry adopted
the Salamon-Munro formula, even though the differences
between the two formulas were not significant for the range of
pillar sizes that were mined at the time.

It is characteristic of the Salamon-Munro formula that the
strength increases at a lower rate as the width-to-height (w/h)
ratios of the pillars increase.  Later, this was rectified by the so-
called squat pillar formula refined by Madden [1991].  This
formula is valid for w/h ratios >5 and is characterized by an
accelerating strength increase with increasing w/h ratios.

An intriguing aspect of the Salamon-Munro formula is the
relatively high value of the constant in the formula that
represents the strength of the coal material—7.2 MPa.  This
compares with the 4.3 MPa used in the Bieniawski formula.
The question has always been why the statistical back-analysis
yielded a higher value than the direct underground tests.  An
attempt by van der Merwe [1993] to explain the significantly
higher rate of pillar collapse in the Vaal Basin yielded a
constant for that area of 4.5 MPa, more similar to Bieniawski
than to Salamon and Munro, but not directly comparable
because it was valid for a defined geological district only.

In the process of analyzing coal pillar failures for other
purposes, an alternative method of analysis was used that
resulted in a formula that is 12.5% more effective in
distinguishing between failed and stable pillars in the database.
This paper describes the method of analysis and the results
obtained.

REQUIREMENTS OF A SAFETY FACTOR FORMULA

A safety factor formula should satisfy two main require-
ments:  (1) it should successfully distinguish between failed and
stable pillars and (2) it should provide the means whereby
relative stability can be judged.  The third requirement,
simplicity, has become less important with the widespread use
of computers, but is still desirable.

These fundamental requirements are conceptually illustrated
in figure 1. Figure 1A shows the frequency distributions of
safety factors of the populations of failed and stable pillars,

respectively.  The area of overlap between the populations can
be seen as a measure of the success of the formula; the perfect
formula will result in complete separation of the two
populations.  Figure 1B is a normalized cumulative frequency
distribution of the safety factors of the failed cases plotted
against safety factors.  At a safety factor of 1.0, one-half of the
pillars should have failed, or the midpoint of the distribution of
failed pillars should coincide with a safety factor of 1.0.
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EXISTING FORMULAS IN SOUTH AFRICA

The safety factor is a ratio between pillar strength and pillar
load.  In its simplest form, the load is assumed to be the weight
of the rock column overlying the pillar and the road around the
pillar, i.e., the tributary area theory is normally used.  This is
widely held to be a conservative, and thus safe, assumption.
However, it has at least one complication when this load is used
to derive a safety factor empirically:  if the load used to
determine pillar strength is greater than the actual load, then the
strength derived will also be greater than the actual pillar
strength.  If an alternative method is then used later to calculate
pillar load, such as numerical modeling, and the strength is not
modified, then the calculated safety factor will be greater than
the real safety factor.

For purposes of this paper, the tributary area loading theory
is used, and the restriction must then be added that the derived
strength is only valid for situations where the tributary area load
is used.  This is not a unique restriction; even if not explicitly
stated, it is also valid for any other empirical safety factor
formula for which the tributary area loading assumption was
used, such as the Salamon-Munro formula.

It then remains to determine a satisfactory formula for the
calculation of pillar strength.  The strength of a pillar is a
function of the pillar dimensions, namely, width and height for
a square pillar, and a constant that is related to the strength of
the pillar material.  According to Salamon and Munro [1967],
the strength is

F ' kw"h$, (1)

where h ' pillar height,

w ' pillar width,

and k ' constant related to material strength.

The parameters k, ", and $ are interdependent.  Salamon and
Munro [1967] used the established greatest likelihood method
to determine their values simultaneously and found:

k ' 7.2 MPa,

" ' 0.46,

and $ ' &0.66.

The linear formula of Bieniawski [1968] is

F ' 4.3(0.64 % 0.36 w/h). (2)

With the addition of new data on failures after 1966 to the
Salamon and Munro database, Madden and Hardman [1992]
found:

k ' 5.24 MPa,

" ' 0.63,

and $ ' &0.78.

These new values, however, did not result in sufficiently
significant changes to safety factors to warrant changing the old
formula, and they were not used by the industry.  Note,
however, the increases in values of " and $ and reduction of k.

According to Madden [1991], the squat pillar formula, valid
only for pillars with a w/h > 5, is

where R ' pillar w/h ratio,

R0 ' pillar w/h ratio at which formula begins to be
  valid ' 5.0,

and V ' pillar volume.

Substituting k ' 7.2 MPa, a ' 0.0667, b ' 0.5933, R0 ' 5.0,
and g ' 2.5 results in a somewhat simplified form of the
formula that is sometimes used:

For quick calculations, equation 4 can be approximated with
negligible error by
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ALTERNATIVE METHOD OF ANALYSIS

Although ", $, and k are interdependent, they can be
separated for purposes of analysis.  It was found that changing
" and $ affected the overlap area of the populations of failed
and stable pillars.  Modifying k does not affect this relationship;
it causes an equal shift toward higher or lower safety factors in
both populations.  Therefore, " and $ can be modified
independently to minimize the overlap area between the two
populations; once that is done, k can be adjusted to shift the
midpoint of the population of failed pillars to a safety factor
of 1.0.

DETERMINATION OF "" AND $$

The data bank for failed pillars for the analysis described
here was that quoted by Madden and Hardman [1992], which
was the original Salamon and Munro data.  The post-1966
failures were added to the data, and the three Vaal Basin
failures were removed because the Vaal Basin should be treated
as a separate group (see van der Merwe [1993]).  (Note that a
subsequent back-analysis indicated that the changes to the data
bank did not meaningfully affect the outcome.)

For the first round of analysis, " and $ were both varied
between 0.3 and 1.2 with increments of 0.1.  Safety factors
were calculated for each case of failed and stable pillars.  For
each of the 100 sets of results, the area of overlap between the
populations of failed and stable pillar populations was
calculated.  A standard procedure was used for this, taken from
Harr [1987].  This involved the simplifying assumption that the
distributions were both normal, but because it was only used for
comparative purposes, the assumption is valid.  Using the same
procedure, the overlap area for the Salamon-Munro formula
was also calculated.  This was used as the basis from which an
improvement factor was calculated for each of the new data
sets.

The safety factor, S, was

The tributary area theory was used to calculate the load:

where H ' mining depth,

w ' pillar width,

and B ' bord width.

Then, the strength was varied, as follows:

where w ' pillar width,

h ' pillar height,

" ' 0.3 to 1.2 with 0.1 increments,

and $ ' 0.3 to 1.2 with 0.1 increments.

Equations 6 through 9 were applied to each of the cases of
failed and stable populations, thus creating 100 sets of
populations of safety factors of failed and stable cases.  For
each set, a comparative improvement factor was calculated.
The first step was to calculate "f" for each of the 100 sets:

where Ms ' mean safety factor of the population of stable
   pillars,

Mf ' mean safety factor of the population of failed
   pillars,

Ss ' standard deviation of the safety factors of the
   stable pillars,

and Sf ' standard deviation of the safety factors of the
   failed pillars.

Then,

and the overlap area between the two populations is

A ' 0.5 & R. (11)

Finally, the improvement factor, I, for each set is
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Strength ' 4 w 0.81

h 0.76
(8)

     Figure 2.CCContour plot of percentage improvement in efficiency of formula to separate failed
and stable pillar cases for variations of "" between 0.3 and 1.2 and for $$ between 0.3 and 1.2.  The
Salamon and Munro [1967] combination is shown by the dotted lines.

where As ' overlap area with the original Salamon-Munro
    formula,

and An ' overlap area with the new formula.

It was then possible to construct contours of the
improvement factors for variations of " and $ (figure 2).
Figure 2 shows that the greatest improvement was for "
between 0.7 and 0.8 and for $ between 0.75 and 0.85.  Fine
tuning was then done by repeating the procedure with
increments of 0.01 for " from 0.7 to 0.8 and for $ between 0.75
and 0.85. The resulting contours are shown in figure 3.

On the basis of the contours of improvement factors in
figure 3, it was concluded that for " ' 0.81 and $ ' 0.76, the
improvement in efficiency of the formula to distinguish
between failed and stable pillar cases is 12.5%.

DETERMINATION OF "k"

The last step was to determine k for the new exponents of "
and $.  This was done by adjusting k so that the midpoint of the
population of failed pillars coincided with a safety factor of 1.0.
It was found that a value of k ' 4.0 MPa satisfied this
condition; this is shown in figure 4.

FINAL NEW FORMULA

The full new formula for pillar strength in the Republic of
South Africa is then as follows:
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     Figure 3.CCContour plot of percentage improvement in efficiency of formula to separate failed and
stable pillar cases for variations of "" between 0.77 and 0.86 and for $$ between 0.72 and 0.81.

    Figure 4.CCPlot of cumulative normalized frequency against safety
factors calculated with the Salamon-Munro formula (solid line) and
the new formula (broken line).  For the new formula, k = 4 MPa, "" =
0.81, and $$ = 0.76.
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COMPARISON OF THE DIFFERENT FORMULAS

Again using the accepted Salamon-Munro formula as a
basis, the formulas of Bieniawski [1968] and Madden and
Hardman [1992] were also compared for relative changes in the
overlap area of failed and stable pillar populations.  The method
used was the one described in the previous section.  The
relevant strength formulas were used in turn for the calculation
of safety factors, and the overlap areas were calculated and
compared with the original Salamon-Munro formula.  The
results are summarized below.

The table shows that the Bieniawski [1968] formula was
only slightly less efficient than the Salamon-Munro formula;
Madden and Hardman [1992] was slightly more efficient,

although the decision not to implement the latter was probably
correct because the improvement is small.  The formula derived
in this paper, referred to in the table above as the "new
formula," is, however, 12.5% more efficient, which is
considered significant.

Strength formula
Improvement

factor, %

Bieniawski [1968] . . . . . . . . . . . &1.5
Madden and Hardman [1992] . . % 2.3
New formula . . . . . . . . . . . . . . . %12.5

DISCUSSION AND IMPLICATIONS FOR THE INDUSTRY

The new formula yields higher values of safety factors for
most pillars than either of the formulas proposed previously for
South African coals.  The exceptions are the small pillars,
such as those typically found at shallow depth.  The new
formula is more successful in explaining the "anomalous" pillar
collapses of small pillars at shallow depth.

Figure 5 compares pillar strengths obtained with the various
formulas for different w/h ratios of the pillars.  Note that due to
the different exponents of width and height, the relationships
are ambiguous (except for the linear formula of Bieniawski
[1968] and the Mark-Bieniawski formula described by Mark
and Chase [1997]).  For purposes of this comparison, the pillar
heights were fixed at 3 m and the widths adjusted to obtain the
different ratios.

An important feature of the comparison is the close
correlation between the Mark-Bieniawski formula and the new
formula.  They were derived independently using different
databases in different countries.  Both predict stronger pillars
for the same dimensions as the other formulas.  The new

formula only deviates meaningfully from Mark-Bieniawski in
the lower range of the w/h ratio, where it predicts weaker
pillars.  This is in accordance with observations where the
failure of small pillars was previously regarded as anomalous.

The major implication for the coal mining industry is that
higher coal extraction can be obtained without sacrificing
stability.  In effect, this is nothing more than a correction of the
overdesign that has been implemented over the past decades.
Figure 6 shows examples of the benefits with regard to the
percentage extraction.  The greater the depth and the higher the
required safety factor, the greater the benefit.

As the new formula deals with underground pillar stability,
it is inherently linked to the safety of underground mine
personnel.  In particular, it will enhance the stability of shallow
workings, which has hitherto been a shortcoming of the
Salamon-Munro formula.  For deeper workings and for cases
where surface structures are undermined, the new formula will
enable mines to extract more coal without sacrificing stability.
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     Figure 5.CCComparison of the strength increase with increasing width to height of pillars.
The new formula results in higher strength values for most of the pillar sizes.  This
comparison is included for demonstration purposes only, because the relationship between
width to height and pillar strength is ambiguous for all cases where the exponents of width
and height are not equal.  Note the similarity between the new formula and the Mark-
Bieniawski formula.

     Figure 6.CCIllustration of the benefit obtained by using the new formula.  As the safety factors
and depth of mining increase, more extraction can be obtained without sacrificing stability.  For
purposes of this comparison, the mining height was 3 m and the road width was 6.6 m.
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